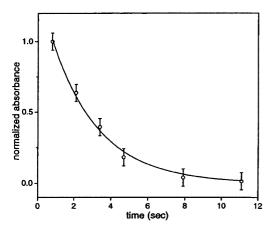
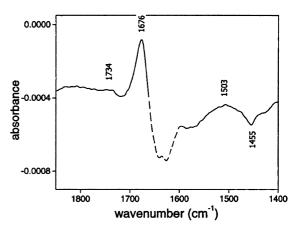
D. J. Phys. Chem. A Yeom and Frei




Figure 5. Single-exponential fit of absorbance decay at 1726 cm⁻¹ (Figure 3) yields decay constant of $0.38 \pm 0.03 \text{ s}^{-1}$.

of the intermediate. As shown in Figure 5, a single-exponential fit of the integrated absorbance decay gives a 1/e time of 2.6 ± 0.2 s.

In addition to observing formaldehyde (1726 cm⁻¹) and growth of formate at 1625 cm⁻¹, spectra of Figure 3a reveal strong transient absorptions not seen in the single pulse experiments (Figure 2a). The main band at 1679 cm⁻¹ is assigned to HCO₂H, the shoulder around 1650 cm⁻¹ is assigned to the H₂O coproduct. These assignments are confirmed by observation of transient H13CO₂H at 1638 cm⁻¹ (coinciding with H_2O) in rapid-scan runs of $^{13}CH_3OH + O_2$ (Figure 4a), and DCO₂H at 1660 cm⁻¹ in experiments with CD₃OD (Figure 4b). 1,2,9,10 H13CO₂H and DCO₂H convert to H13CO₂-...Fe (1578) cm⁻¹) and DCO₂⁻···Fe (1615 cm⁻¹), respectively, within 10 s. We conclude that formic acid emerges as an intermediate in rapid-scan experiments but only when irradiating with multiple laser pulses in rapid succession (100 ms between pulses). This points to secondary photolysis of a reaction intermediate as the source of HCO₂H.

According to our recent study of addition products of formaldehyde with various molecules that are present in the CH₃OH + O₂ reaction mixture, only hydroxymethylhydroperoxide is photolabile upon irradiation at 355 nm in a FAPO-5 sieve.² To determine the photoproducts, time-resolved experiments of HO₂CH₂OH photodissociation in a FAPO-5 sieve were performed on the millisecond time scale. Because of the thermal instability of the hydroperoxide (half-life 20 min at 296 K)², FT-IR runs were conducted immediately following roomtemperature adsorption of CH₂=O gas onto the H₂O₂-loaded sieve. Rapid-scan experiments consisted of acquisition of interferograms of 25 ms duration according to the procedure described in section II. A 200 laser shot experiment lasted 15 s, which guaranteed negligible thermal decomposition of the hydroxymethylhydroperoxide during the rapid-scan experiment. Absorbance spectra were obtained by ratioing and then averaging consecutive single beam spectra.

The resulting spectrum, displayed in Figure 6, shows the photoinduced depletion of HO₂CH₂OH at 1455 cm⁻¹. The predominant product band is at 1676 cm⁻¹ and originates from HCO₂H. The depletion in the 1650–1620 cm⁻¹ range (dashed line) is due to a laser-induced thermal effect on the large absorption of residual H₂O (hydrogen peroxide is loaded into the sieve as a 30% aqueous solution). For the same reason, any formation of H₂O upon HO₂CH₂OH photodissociation would not be detectable. Very weak absorptions at 1734 and 1503 cm⁻¹ signal the formation of a small amount of CH₂=O. Hence, two

Figure 6. Rapid-scan FT-IR spectroscopy of 355 nm induced HO₂-CH₂OH photodissociation in a FAPO-5 sieve at 25 ms resolution (298 K). Dashed part of the spectrum indicates laser-induced thermal effect on residual water.

photodecomposition channels are operative, namely, the major channel

$$HO_2CH_2OH \xrightarrow{hv} HCO_2H + H_2O$$
 (1)

and the minor path

$$HO_2CH_2OH \xrightarrow{hv} CH_2 = O + H_2O_2$$
 (2)

(Note that the formaldehyde coproduct, H_2O_2 , does not possess an infrared absorption in the $2000-1300~cm^{-1}$ region). ¹¹ It is interesting to add that both channels are also observed upon photodissociation of the molecule in homogeneous solution. ¹² We conclude that the formic acid product observed in Figures 3 and 4 originates most probably from secondary photolysis of hydroxymethylhydroperoxide intermediate. Because no HCO_2H is detected upon single pulse-induced $CH_3OH + O_2$ photolysis and because formaldehyde is only a minor photodissociation product of HO_2CH_2OH , the $CH_2=O$ growth observed in the rapid-scan experiments is exclusively due to single photon reaction of CH_3OH and O_2 .

To obtain direct evidence for the intermediacy of HO₂CH₂-OH, we have measured time-resolved FT-IR spectra on the microsecond time scale by employing the step-scan method. Of the three absorptions observed for an authentic hydroxymethylhydroperoxide sample in the FAPO-5 sieve (1456, 2884, and 2948 cm⁻¹)², the CH stretching modes are in a region where the sieve scatters strongly, resulting in a noise level that is too high for step-scan measurements. Therefore, we have concentrated the measurements on the absorption in the fingerprint region. Figure 7 shows the 500 μ s time slices of step-scan runs of $CH_3OH + O_2$ (trace a) and $CH_3OH + N_2$ (trace b). Aside from the methanol desorption effect around 1475 cm⁻¹, there is positive growth at 1450 cm⁻¹, which we attribute to HO₂- CH_2OH . The product band is most clearly evident from the O_2 -N₂ difference spectrum shown in the insert. Note that the observed absorbance growth at 1450 cm⁻¹ due to CH₃OH + O₂ photoreaction is diminished by simultaneous depletion upon photodissociation of HO₂CH₂OH that remains from the preceding laser pulse.

IV. Discussion

A key result of the rapid-scan experiments is that the rise of the final product HCO₂⁻···Fe follows a single-exponential law