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H,0, than with H,O or lattice OH groups, consistent with the
finding that HO,CH,OH is formed at the exclusion of CH>(OH),
and POCH,OH (Figure 5a). In contrast to the behavior of
CH,(OH); or POCH,OH, brief irradiation at 355 nm of FAPO-5
containing HO,CH,OH (5 min at 500 mW cm™2) led to
quantitative conversion of the hydroperoxide to HCO,H (1677
cm™!) and HCO,+++Fe (1618 and 2912 cm™!), as can be seen
from Figure 5, trace b. The 1618 cm™! absorption is presumably
an overlap of formate and H,O product bands:

hv
HO,CH,0H —— H,0 + HCO,H (6)
355 nm

The simultancous depletion at 1456, 2884, and 2948 cm™!
confirms the assignment of these bands to HO,CH;OH. In a
more detailed study, we found that irradiation at 500 mW cm™2
for a mere 20 s led to complete depletion of HO,CH,OH. No
bleach of CH;(OH),;, POCH,OH, or CH30CH,OH was detected
under these photolysis conditions. Reaction 6 is the established
UV photodissociation channel of hydroxymethylhydroperox-
ide.?0 Similar loading experiments with CD,=O revealed HO,-
CD,OH product absorptions at 2104 and 2256 cm™!. As in the
case of the parent isotope, reaction with HO, was complete on
the time scale of an FT-IR run, and subsequent photolysis
resulted in efficient conversion to DCO,H (1658 cm™!) and
DCO,~++Fe (1613 and 2188 cm™!). We conclude that formal-
dehyde reacts with H;O; in a FAPO-5 sieve within less than 2
min to yield hydroxymethylhydroperoxide. The adduct rear-
ranges thermally at room temperature to formic acid (formate)
and H,O with a decay time of about 20 min. Efficient
dissociation to the same products takes place upon 355 nm
irradiation.

Implications for a Mechanism of CH;0H + O, Photo-
oxidation. The lack of any build-up of the postulated CH,=O
intermediate upon 355 nm induced reaction of CH3;OH with O,
in a FAPO-5 sieve! might be due to rapid formation of adducts
with CH30H, H,O, lattice OH groups, or H,0O,. The consider-
able stability of CH;0CH,OH (10 h), CH(OH), (2 h), and
POCHOH (2 h) with respect to thermal release of formaldehyde
(and subsequent Cannizzaro or Tishchenko reaction) in the
room-temperature sieve rules out any significant role of these
intermediates. On the other hand, HO,CH;OH exhibits a much
shorter lifetime at room temperature (complete dissociation in
20 min) and is extremely photolabile with respect to fragmenta-
tion to HCO,H and H,O. Clearly, the adduct of formaldehyde
and H,0, might play a role as an intermediate of the CH3;OH
+ O, photoreaction in FAPO-5 sieve. Time-resolved FT-IR
spectroscopy is required to investigate this possibility.?!

IV. Conclusions

In this paper, we have studied the reactivity of gaseous
formaldehyde in the pores of an Fe aluminophosphate sieve (AFI
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structure) with H,O, H,0,, CH30H, or lattice OH groups. These
molecules are present in the reaction mixture of LMCT-induced
CH;0OH + O; photooxidation in a FAPO-5 sieve and could
therefore act as chemical traps of formaldehyde, a proposed
intermediate. Infrared spectra of all four addition products,
namely, CH;(OH),, HO,CH,OH, CH3;0CH,0H, and POCH,-
OH, as well as partially deuterated modifications have been
established. Knowledge of infrared absorptions of these species
is crucial for analyzing mechanistic experiments based on time-
resolved FT-IR spectroscopy of CH30H + O, photooxidation
in this framework substituted transition metal sieve. Among the
formaldehyde reaction products, hydroxymethylhydroperoxide,
the adduct of CH,=0O and H,0,, exhibits thermal and photo-
dissociation behavior consistent with a role in the LMCT-
induced photoreaction of CH30H and O; in an Fe alumino-
phosphate sieve.
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