$\rm H_2O_2$ than with $\rm H_2O$ or lattice OH groups, consistent with the finding that $\rm HO_2CH_2OH$ is formed at the exclusion of $\rm CH_2(OH)_2$ and $\rm POCH_2OH$ (Figure 5a). In contrast to the behavior of $\rm CH_2(OH)_2$ or $\rm POCH_2OH$, brief irradiation at 355 nm of FAPO-5 containing $\rm HO_2CH_2OH$ (5 min at 500 mW cm⁻²) led to quantitative conversion of the hydroperoxide to $\rm HCO_2H$ (1677 cm⁻¹) and $\rm HCO_2^-\cdots$ Fe (1618 and 2912 cm⁻¹), as can be seen from Figure 5, trace b. The 1618 cm⁻¹ absorption is presumably an overlap of formate and $\rm H_2O$ product bands:

$$\text{HO}_2\text{CH}_2\text{OH} \xrightarrow{h\nu} \text{H}_2\text{O} + \text{HCO}_2\text{H}$$
 (6)

The simultaneous depletion at 1456, 2884, and 2948 cm⁻¹ confirms the assignment of these bands to HO₂CH₂OH. In a more detailed study, we found that irradiation at 500 mW cm⁻² for a mere 20 s led to complete depletion of HO₂CH₂OH. No bleach of CH₂(OH)₂, POCH₂OH, or CH₃OCH₂OH was detected under these photolysis conditions. Reaction 6 is the established UV photodissociation channel of hydroxymethylhydroperoxide. 20 Similar loading experiments with CD₂=O revealed HO₂-CD₂OH product absorptions at 2104 and 2256 cm⁻¹. As in the case of the parent isotope, reaction with H₂O₂ was complete on the time scale of an FT-IR run, and subsequent photolysis resulted in efficient conversion to DCO₂H (1658 cm⁻¹) and DCO₂-···Fe (1613 and 2188 cm⁻¹). We conclude that formaldehyde reacts with H₂O₂ in a FAPO-5 sieve within less than 2 min to yield hydroxymethylhydroperoxide. The adduct rearranges thermally at room temperature to formic acid (formate) and H₂O with a decay time of about 20 min. Efficient dissociation to the same products takes place upon 355 nm irradiation.

Implications for a Mechanism of $CH_3OH + O_2$ Photooxidation. The lack of any build-up of the postulated CH₂=O intermediate upon 355 nm induced reaction of CH₃OH with O₂ in a FAPO-5 sieve¹ might be due to rapid formation of adducts with CH₃OH, H₂O, lattice OH groups, or H₂O₂. The considerable stability of CH₃OCH₂OH (10 h), CH₂(OH)₂ (2 h), and POCH₂OH (2 h) with respect to thermal release of formaldehyde (and subsequent Cannizzaro or Tishchenko reaction) in the room-temperature sieve rules out any significant role of these intermediates. On the other hand, HO₂CH₂OH exhibits a much shorter lifetime at room temperature (complete dissociation in 20 min) and is extremely photolabile with respect to fragmentation to HCO₂H and H₂O. Clearly, the adduct of formaldehyde and H₂O₂ might play a role as an intermediate of the CH₃OH + O₂ photoreaction in FAPO-5 sieve. Time-resolved FT-IR spectroscopy is required to investigate this possibility.²¹

IV. Conclusions

In this paper, we have studied the reactivity of gaseous formaldehyde in the pores of an Fe aluminophosphate sieve (AFI

structure) with H₂O, H₂O₂, CH₃OH, or lattice OH groups. These molecules are present in the reaction mixture of LMCT-induced CH₃OH + O₂ photooxidation in a FAPO-5 sieve and could therefore act as chemical traps of formaldehyde, a proposed intermediate. Infrared spectra of all four addition products, namely, CH₂(OH)₂, HO₂CH₂OH, CH₃OCH₂OH, and POCH₂-OH, as well as partially deuterated modifications have been established. Knowledge of infrared absorptions of these species is crucial for analyzing mechanistic experiments based on timeresolved FT-IR spectroscopy of CH₃OH + O₂ photooxidation in this framework substituted transition metal sieve. Among the formaldehyde reaction products, hydroxymethylhydroperoxide, the adduct of CH₂=O and H₂O₂, exhibits thermal and photodissociation behavior consistent with a role in the LMCTinduced photoreaction of CH₃OH and O₂ in an Fe aluminophosphate sieve.

Acknowledgment. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-ACO3-76SF00098. Y.H.Y. thanks the Korea Science and Engineering Foundation (KOSEF) for fellowship support.

References and Notes

- (1) Ulagappan, N.; Frei, H. J. Phys. Chem. A. 2000, 104, 490.
- (2) Meier, W. M.; Olson, D. H.; Baerlocher, C. Zeolites 1996, 17, 26.
- (3) Spence, R.; Wild, W. J. Chem. Soc. (London) 1935, 338.
- (4) Langer, S.; Ljungstrom, E.; Ellermann, T.; Nielson, O. J.; Sehested, J. Chem. Phys. Lett. 1995, 240, 53.
 - (5) Johnson, R. A.; Stanley, A. E. Appl. Spectrosc. 1991, 45, 218.
- (6) Wrobel, R.; Sander, W.; Kraka, E.; Cremer, D. J. Phys. Chem. A 1999, 103, 3693.
- (7) Herzberg, G. Infrared and Raman Spectra; Van Nostrand: New York, 1945; p 300.
- (8) Luger, C.; Schriver, A.; Levant, R.; Schriver-Mazzuoli, L. Chem. Phys. 1994, 181, 129.
- (9) Colthup, N. B.; Daly, L. H.; Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy, 3rd ed.; Academic Press: New York, 1990; p 327, 366.
- (10) Busca, G.; Lamotte, J.; Lavalley, J. C.; Lorenzelli, V. J. Am. Chem. Soc. 1987, 109, 5197.
- (11) Millar, G. J.; Rochester, C. H.; Waugh, K. C. J. Catal. 1995, 155,
- (12) Zamboni, V.; Zerbi, G. J. Polym. Sci. 1963, C7, 153.
- (13) Matsuura, H.; Yamamoto, M.; Murata, H. Spectrochim. Acta 1980, 36A, 321.
- (14) March, J. Advanced Organic Chemistry, 4th ed.; Wiley: New York, 1992; p 1233
- (15) March, J. Advanced Organic Chemistry, 4th ed.; Wiley: New York, 1992; p 1235.
 - (16) Yeom, Y. H.; Frei, H. J. Phys. Chem. A 2001, 105, 5334.
- (17) Su, F.; Calvert, J. G.; Shaw, J. H.; Niki, H.; Maker, P. D.; Savage, C. M.; Breitenbach, L. D. Chem. Phys. Lett. 1979, 65, 221.
- (18) Niki, H.; Maker, P. D.; Savage, C. M.; Breitenbach, L. D. Chem. Phys. Lett. 1980, 75, 533.
 - (19) Bauerle, S.; Moortgat, G. K. Chem. Phys. Lett. 1999, 309, 43.
 - (20) Su, F.; Calvert, J. G.; Shaw, J. H. J. Phys. Chem. 1979, 83, 3185.
 - (21) Yeom, Y. H.; Frei, H. J. Phys. Chem. A 2001, 105, XXXX.