Figure 4. Thermal behavior of adducts formed upon adsorption of CH₂=O into dehydrated FAPO-5. Infrared difference spectra show reaction following the warming of the system displayed in Figure 2b to 296 K: (a) immediately after reaching 296 K and (b) 110 min at 296 K. period, in contrast to the $CH_2(OH)_2$ and $P-OCH_2OH$ absorptions. This confirms that formic acid originates from initially produced formaldehyde adducts, although at a much slower rate than at room temperature. Analogous observations were made in warm experiments of a FAPO-5 sieve containing $CD_2(OH)_2$ and $P-OCD_2OH$, leading to DCO_2H (1660 cm⁻¹) and DCO_2-CD_3 (1685, 2075, and 2192 cm⁻¹). A corresponding series of warm-up experiments with formaldehyde adducts in the FAPO-5 sieve with minimal H₂O content, shown in Figure 4, confirmed the observations made above. Spectra a of Figures 4 and 3 afford a comparison of the fate of CH₂(OH)₂ and P-OCH₂OH in sieves with different H₂O concentration. As expected, the matrix with lower water concentration exhibits a higher POCH₂OH/CH₂(OH)₂ depletion ratio. This is most clearly seen when comparing the intensities of the bands at 2913 cm⁻¹ (POCH₂OH) and 2978 cm⁻¹ (CH₂-(OH)₂). Furthermore, the HCO₂CH₃/HCO₂H product ratio (1717/ 1679 cm⁻¹) is higher in the matrix with less H₂O (Figure 4a), indicating that Tishchenko reaction 4 of CH₂=O is enhanced, whereas Cannizzaro reaction 3 is diminished. The same observations are made in runs with CD₂=O adducts. Table 3 summarizes infrared spectra of all species observed in CH₂=O and $CD_2=O$ loading experiments in FAPO-5. From this series of CH₂=O and CD₂=O loading experiments in a FAPO-5 sieve containing small amounts of water, we conclude that formaldehyde reacts with lattice P-OH groups and residual H₂O to yield P-OCH₂OH and methanediol, respectively. The addition occurs at 250 K within a few minutes or faster. Raising the temperature to 296 K results in release of formaldehyde followed by Cannizzaro and Tishchenko reactions to yield formic acid and methylformate. The rise time of these final products at room temperature is around 2 h. Irradiation of FAPO-5 containing CH₂(OH)₂ and P-OCH₂OH at 250 K with 355 nm light did not accelerate the conversion to formaldehyde or carboxyl products. **Formaldehyde** + **H₂O₂**. Exposing a room-temperature FAPO-5 pellet loaded with H₂O₂/H₂O solution according to the method described in section II to 1 Torr of CH₂=O gas resulted in instantaneous product absorptions at 1456, 2884, and 2948 cm⁻¹, as shown in Figure 5a. The bands agree with those of a gas-phase FT-IR spectrum of HO₂CH₂OH reported by the groups of Niki and Calvert. ^{17,18} Therefore, we assign the product to hydroxymethylhydroperoxide formed by addition of formaldehyde to hydrogen peroxide: $$CH_2 = O + H_2O_2 \rightarrow HO_2CH_2OH$$ (5) Figure 5. Infrared spectra recorded upon adsorption of 1 Torr CH₂=O into a FAPO-5 sieve loaded with H_2O_2/H_2O solution at 296 K. (a) Difference of spectra taken after 2 min exposure to CH₂=O and before adding formaldehyde. Intense absorption of reactant and product OH groups in the $3000-3600 \, \mathrm{cm}^{-1}$ region prevents identification of peaks of HO_2CH_2OH . The shoulder at $1390 \, \mathrm{cm}^{-1}$ is a baseline effect not associated with a guest absorption. (b) Difference spectra recorded upon irradiation at $355 \, \mathrm{min}$ ($500 \, \mathrm{mW} \, \mathrm{cm}^{-2}$) for 5 min and before CH₂=O loading. TABLE 3: Infrared Product Frequencies upon Adsorption of Formaldehyde onto a FAPO-5 Sieve at 250 K and Warm Up to 296 K (in cm⁻¹) | frequency | | | |--------------------|--------------------|--| | CH ₂ =O | CD ₂ =O | species | | 1381 | | HCO₂H | | 1400 | | POCH ₂ OH | | 1422 | | $CH_2(OH)_2$ | | 1436 | | HCO₂CH₃ | | 1456 | | HCO ₂ CH ₃ | | 1472 | | POCH ₂ OH | | 1484 | | POCH ₂ OH | | 1503 | | $CH_2=O$ | | | 1620 | DCO ₂ -···Fe | | 1628 | | HCO₂ [−] ····Fe | | | 1660 | DCO₂H | | 1679 | | HCO₂H | | | 1685 | $CD_2=O$, DCO_2CD_3 | | 1717 | | HCO₂CH₃ | | 1720 | | CH ₂ =O | | 1732 | | CH ₂ =O | | | 2075 | DCO_2CD_3 | | | 2091 | $CD_2=O$ | | | 2106 | POCD₂OH | | | 2137 | $CD_2(OH)_2$ | | | 2192 | DCO ₂ CD ₃ , DCO ₂ -···Fe | | | 2213 | $CD_2=O$ | | | 2225 | POCD₂OH | | | 2256 | $CD_2=O, CD_2(OH)_2$ | | 2795 | | POCH ₂ OH | | 2824 | | $CH_2=O$ | | 2852 | | HCO ₂ CH ₃ | | 2898 | | $CH_2=O$ | | 2913 | | POCH ₂ OH, HCO ₂ -···Fe | | 2978 | | $CH_2(OH)_2$ | | 2990 | | CH ₂ =O | | 3200 (broad) | | CH ₂ (OH) ₂ , POCH ₂ OH | | | | $CD_2(OH)_2$, $POCD_2OH$ | The same spectrum was observed upon synthesis of an authentic sample of HO₂CH₂OH by bubbling CH₂=O gas through a 30% H₂O₂ solution at 60 °C for 3 h, as described in the literature, ¹⁹ followed by loading of the solution into the FAPO-5 pellet. An additional shoulder of 1677 cm⁻¹ and a band at 1618 cm⁻¹ indicate the spontaneous formation of small amounts of HCO₂H and HCO₂-···Fe, respectively (Figure 5a). No trace of gas phase or adsorbed CH₂=O was detected, and no further growth of HO₂CH₂OH occurred after the initial spectrum was recorded. This implies that formaldehyde reacts substantially faster with