Figure 2. Infrared difference spectra recorded upon adsorption of 2 Torr of CH₂=O on a FAPO-5 sieve at 250 K (a) immediately after loading and (b) 3 min later. Trace c shows the infrared difference spectrum recorded upon adsorption of 1.3 Torr CH₂=O onto a FAPO-5 sieve loaded with 2 Torr H₂O after dehydration of the pellet. TABLE 2: Absorption Frequencies of Adducts of Formaldehyde with H₂O and Lattice P-OH Groups in a FAPO-5 Sieve (in cm⁻¹) | reaction product | | | |--------------------|--------------------|--| | CH ₂ =O | CD ₂ =O | | | loading | loading | assignment | | 1400 | | $\gamma_{\rm w}({\rm CH_2})$, POCH ₂ OH | | 1425 | | $\gamma_{\rm w}({\rm CH_2}), {\rm CH_2}({\rm OH})_2$ | | 1470 | | $\delta(CH_2)$, POCH ₂ OH | | 1483 | | δ (CH ₂), POCH ₂ OH | | | 2105 | $\nu_{\rm s}({\rm CD_2}),{\rm POCD_2OH}$ | | | 2138 | $\nu_{\rm s}({\rm CD_2}),{\rm CD_2}({\rm OH})_2$ | | | 2225 (sh) | $\nu_{\rm a}({\rm CD_2})$, POCD ₂ OH | | | 2254 | $\nu_a(\text{CD}_2), \text{CD}_2(\text{OH})_2$ | | 2796 | | $\nu_{\rm s}({\rm CH_2})$, POCH ₂ OH | | 2912 | | $\nu_a(\text{CH}_2)$, POCH ₂ OH | | 2980 | | $\nu_{\rm a}({\rm CH_2}),{\rm CH_2}({\rm OH})_2$ | | 3200 (broad) | 3200 (broad) | ν (OH), CH ₂ (OH) ₂ , POCH ₂ OH | | | | CD ₂ (OH) ₂ , POCD ₂ OH | difference spectrum taken immediately after addition of 1 Torr CH_2 =O into this matrix, shown in Figure 2c, exhibits the same product bands as those observed in trace b. Depletion of H_2O around 1650 cm⁻¹ and of $\nu(OH)$ of P-OH groups at 3674 cm⁻¹ again indicates that both H_2O and lattice hydroxyl groups interact with formaldehyde. Product bands at 1425 and 2980 cm⁻¹ are more intense in the spectrum in Figure 2 part c than those in part b, however. Hence, they are assigned to $CH_2(OH)_2$, the expected reaction product of H_2O and CH_2 =O: $$CH_2 = O + H_2O \rightarrow CH_2(OH)_2 \tag{1}$$ Indeed, the two bands agree well with the infrared spectrum of methanediol isolated in solid Ar.⁸ All other product absorptions (except 1676 cm⁻¹, see below) are attributed to the addition product of CH₂=O and lattice OH groups $$(O-)_3P-OH+CH_2=O \rightarrow (O-)_3P-OCH_2OH$$ (2) Bands assigned to P—OCH₂OH agree well with literature values for CH₂ stretching and bending modes of P—O—CH₂ moieties.⁹ Frequencies and assignments of the reaction products of CH₂=O with H₂O and P—OH are summarized in column 1 of Table 2. It is important to note that the infrared spectra assigned here to CH₂(OH) ₂ and POCH₂OH are similar to those of surface bound dioxymethylene and polyoxymethylene compounds observed when adsorbing gaseous CH₂=O onto various porous oxides.^{10,11} This is not surprising because all these species feature the same OCH₂O moiety.¹² However, the formaldehyde products **Figure 3.** Thermal behavior of adducts formed upon coadsorption of CH₂=O and H₂O in FAPO-5. Infrared difference spectra show reaction after the warming of the system displayed in Figure 2c to 296 K: (a) immediately after reaching 296 K and (b) 70 min at 296 K. observed on oxide surfaces can be distinguished from those found in the FAPO-5 sieve based on their thermal stability; the oxymethylene species formed on porous oxide surfaces are stable at room temperature, whereas CH₂(OH) ₂ and POCH₂-OH quantitatively dissociate above 0 °C (see below). Analogous loading experiments with CD₂=O confirmed the result with the parent reactions just described. In "dehydrated" FAPO-5 (no extra water added after evacuation at 200 °C) or in FAPO-5 loaded with an additional small amount of H₂O, both gas phase (1701 cm⁻¹) and adsorbed CD₂=O (1685, 2091, 2213, 2256 cm⁻¹) decreased rapidly under depletion of H₂O and lattice OH groups. Product absorptions were at 2105, 2138, 2225 (shoulder), and 2254 cm⁻¹. Comparison of the product intensities at the two H₂O concentrations indicates that the 2138 and 2254 cm⁻¹ peaks originate from CD₂(OH)₂, in good agreement with a Raman study of CD₂(OD)₂, whereas 2105 and 2225 cm⁻¹ absorptions are assigned to C-D stretching modes of P-OCD₂OH groups (Table 2, column 2). The OH stretching modes of both products give rise to a broad absorption around 3200 cm⁻¹. Warm up to 296 K of the FAPO-5 sieve containing CH₂-(OH₂) and P−OCH₂OH led to depletion of the two adducts under release of CH₂=O (1504, 1732 cm⁻¹). Figure 3a shows the infrared difference spectrum taken after and before raising the pellet temperature from 250 to 296 K for FAPO-5 preloaded with an additional amount of H₂O. After 70 min at 296 K, nearly quantitative conversion of CH₂(OH)₂ to methyl formate, HCO₂-CH₃ (1717, 1456, and 1436 cm⁻¹) and HCO₂H (1679 and 1381 cm⁻¹), has occurred (Figure 3b). Assignments of these products are readily made on the basis of FT-IR measurements reported earlier for room-temperature loading of CH₂O.¹ The emergence of formaldehyde suggests that the initial step upon warm is the reverse of reactions 1 and 2 followed by Cannizzaro disproportionation:¹.¹¹4 $$2CH2=O + H2O \rightarrow HCO2H + CH3OH$$ (3) We have noted previously that formic acid and methanol condense slowly to methylformate in a FAPO-5 sieve at room temperature. Because the growth of HCO₂CH₃ in Figure 3 does not exhibit a clear induction period, the ester may in addition emerge from Tishchenko dimerization of formaldehyde 15,16 $$CH_2 = O + CH_2 = O \rightarrow HCO_2CH_3 \tag{4}$$ Note that a very small amount of HCO₂H is already formed upon CH₂=O loading at 250 K (Figure 2c). However, the growth of these bands at 250 K shows a distinct induction