B J. Phys. Chem. A Yeom et al. Figure 1. Infrared difference spectra before and after admission of 2 Torr of CH₂=O into FAPO-5 loaded with CH₃OH at 250 K. (a) 2 min, (b) 8 min, (c) 18 min, (d) 60 min, and (e) 90 min after exposure to CH₂=O gas. The weak band at 1628 cm⁻¹ emerging after 60 min is due to HCO₂-···Fe. TABLE 1: Absorption Frequencies of Methanol + Formaldehyde Product in a FAPO-5 Sieve (in cm⁻¹) | reaction product | | | | |--|--|---|----------------------------------| | CH ₃ OH +
CH ₂ =O → | CH ₃ OH +
CD ₂ =O → | CD ₃ OD(H) +
CH ₂ =O → | | | CH ₃ OCH ₂ OH | CH ₃ OCD ₂ OH | CD ₃ OCH ₂ OD(H) | assignment ^a | | <u> </u> | C1130CD2011 | | assignment | | 1412 | | 1415 | $\gamma_{\rm w}({ m CH_2})$ | | | 1443 (sh) | | | | 1452 | 1454 | | $\delta_a(CH_3)$ | | 1466 | 1467 | | $\delta_a(CH_3)$ | | 1480 | | 1481 | $\delta(CH_2)$ | | | | 2069 | $\nu_{\rm s}({\rm CD_3})$ | | | 2094 | | $\nu_{\rm s}({\rm CD}_2)$ | | | 2198 | | $\nu_{\rm a}({\rm CD}_2)$ | | | | 2220 | $\nu_{\rm a}({\rm CD_3})$ | | | 2245 | | $\nu_{\rm a}({ m CD}_2)$ | | | | 2450 (broad) | ν (OD) | | 2782 | | 2786 | $\nu_{\rm s}$ (CH ₂) | | 2829 | 2833 | | $\nu_{\rm s}$ (CH ₃) | | 2901 | | 2901 | ν_a (CH ₂) | | | 2911 | | | | 2938 | 2938 | | ν_a (CH ₃) | | 2966 | | 2966 | ν_a (CH ₂) | | 3000 | 3002 | | ν_a (CH ₃) | | 3280 (broad) | 3280 (broad) | 3280 (broad) | ν(OH) | | | | | | $[^]a$ Same assignment for more than one product band implies site or Fermi resonance effects. 1, trace a. All bands observed are listed in Table 1, first column. Although growth continues over a period of about 90 min (Figure 1b—e), the product spectrum is already well developed immediately after CH₂=O loading. Hence, the reaction of formaldehyde with methanol is fast compared with the time scale on which the static FT-IR spectra are taken (2 min). The implication is that the reaction has a very low activation barrier. The only product we can conceive of that involves a low activation energy and has no C=O group (no product absorption around 1700 cm⁻¹) is methoxymethanol, CH₃OCH₂OH⁴ (the weak, broad band at 1630 cm⁻¹ exhibits an induction period and is due to formate, HCO₂⁻···Fe ¹. Its origin will be discussed below). The infrared frequencies shown in column 1 of Table 1 agree with those reported for CH₃OCH₂OH in the gas phase⁵ or isolated in solid Ar.6 Assignments presented in the last column of Table 1 are based on quantum chemical work reported by Wrobel et al.6 The identification of the product as methoxymethanol was confirmed by D isotope labeling experiments. As in the case with the parent isotopes, initial reaction of CD₂=O adsorbed into the FAPO-5 sieve loaded with CH₃OH was too fast for the detection of formaldehyde by static FT-IR spectroscopy. The resulting product spectrum is shown in Table 1, column 2. Only half as many bands are observed in the CH bending region as in the case of CH₃OCH₂OH, indicating that the 1454 and 1467 cm⁻¹ peaks are due to modes of the CH₃ group. The three absorptions in the CD stretching region at 2094, 2198, and 2245 cm⁻¹ are attributed to the CD₂ group (or Fermi resonance with overtone), and the 2833, 2911, 2938, and 3002 cm⁻¹ bands are attributed to stretching modes and Fermi resonances involving overtones of the CH₃ group of CH₃OCD₂OH. These assignments, and identification of the product as methoxymethanol, are further corroborated by the spectrum observed upon coloading of CD₃OD and CH₂=O given in column 3 of Table 1. Upon adsorption of the alcohol (before loading of CH₂=O), the spectrum of CD₃OD shows bands at 2076, 2137, 2244, 2500 (broad), and 2664 cm⁻¹. The latter two absorptions are assigned to $\nu(OD)$ of methanol hydrogen bonded to the micropore wall and to free $\nu(OD)$ of OD groups, respectively. Weaker $\nu(OH)$ absorptions at 3250 and 3610 cm⁻¹ indicate formation of CD₃-OH by partial exchange of the OD groups with residual H₂O in the sieve or with lattice OH groups. Upon adsorption of CH₂=O, bands appear in the CH bending region at 1415 and 1481 cm⁻¹ and at 2786, 2901, and 2966 cm⁻¹ in the ν (CH) region. Because these are observed in the CH₃OCH₂OH spectrum, but not in the CH3OCD2OH spectrum, they are attributed to the CH₂ group. Similarly, the 2069 and 2220 cm⁻¹ peaks in the CD stretching region are missing in the CH₃OH + CD₂=O product and, hence, are assigned to the CD₃ group. We conclude that, in a FAPO-5 sieve, formaldehyde adds to methanol to yield methoxymethanol, the hemiacetal being formed in a matter of minutes or faster at 250 K. Warm up of the sieve to room temperature upon formation of methoxymethanol at 250 K resulted mostly in desorption of the product. Above 0 °C, growth of absorptions in the C=O stretching region indicated very slow generation of methyl formate: 1717 cm⁻¹ (HCO₂CH₃) in the case of CH₃OCH₂OH; 1708 cm⁻¹ (HCO₂CD₃) for CD₃OCH₂OH; and 1685 cm⁻¹ (DCO₂CH₃) in the case of CH₃OCD₂OH. This process is attributed to dissociation of methoxymethanol to methanol and formaldehyde, followed by Tishchenko dimerization of the aldehyde or Cannizzaro reaction with residual H₂O (as indicated by very slow formation of HCO₂⁻) followed by ester condensation with methanol to yield methylformate¹. Loading of Formaldehyde in the Presence of Water. Recording of an infrared spectrum immediately following adsorption of 2 Torr of CH₂=O at 250 K into a dehydrated pellet gave the familiar spectrum of formaldehyde in FAPO-5 with peaks at 1503, 1732, 2824, 2898, and 2990 cm⁻¹ reported earlier,1 as well as residual gas-phase absorptions with Q branches at 1503 and 1745 cm⁻¹.7 The spectrum is displayed in Figure 2, trace a. As can be seen from trace b, peaks appear within minutes at 1400, 1422, 1472, and 1484 cm⁻¹ and also at 2795, 2913, 2978, and 3200 cm⁻¹, with little further growth at later times. Concurrently, all CH2=O peaks decrease, and a small bleach is observed at 1650 cm⁻¹ coincident with the bending mode of residual H₂O (upon heating of the pellet at 200 °C overnight, the residual absorbance of H₂O at 1650 cm⁻¹ is typically 0.15). In addition, the OH stretch absorption of lattice P-OH groups¹ at 3674 cm⁻¹ shows loss of intensity as well (Figure 2). This suggests that both P-OH groups and residual H₂O react with adsorbed formaldehyde. To distinguish the product spectra, a FAPO-5 pellet with a higher concentration of water was prepared by loading 2 Torr of H₂O gas into the sieve after dehydration at 200 °C. The additional increase of the H₂O bending mode intensity was 0.1 absorbance units. A